欢迎访问成都武华科技有限公司!我们给您提供优质服务!
文章详细 当前位置:网站首页 > 电子知识
晶体滤波器
来源:武华科技   发布时间:2012-08-20  浏览数:4346    【收藏本页】

  用晶体谐振器组成的滤波器 。与 LC 谐振回路构成的滤波器相比,晶体滤波器在频率选择性、频率稳定性、过渡带陡度和插入损耗等方面都优越得多,已广泛用于通信、导航、测量等电子设备。1921 年 W. G.凯地将晶体谐振器用于各种调谐电路 ,形成了晶体滤波器的雏形 。1927年L.艾斯本希德把晶体谐振器用于真正的滤波电路 。1931年 W.P.梅森又把它用于格型滤波器。60年代中期,集成式晶体滤波器研制成功,晶体滤波器在小型化方面有了很大发展。

石英晶体滤波器是采用石英晶体谐振器为基本元件的电气滤波器,由于它有很高的品质因数(数万以上),因此在军、民用电子设备中应用极其广泛,特别是在中频范畴内具有不可替代的地位。

 

石英晶体滤波器可分为低通、高通、带通和带阻晶体滤波器。其中又以带通及带阻晶体滤波器最为常用。各种晶体滤波器都可由梯型或差接桥型电路组成,而差接桥型电路具有所需元件较少、对元件参数要求较低、设计灵活,因此在大多数工程设计中,通常采用这种电路。
 

石英晶体滤波器具有以下特点:
 

阻带衰减高:石英晶体滤波器具有陡峭的阻带衰减特性,一般阻带衰减都在60dB以上,有的甚至达到90dB以上。

矩形系数好:石英晶体滤波器的矩形系数一般在2到5左右,频率较低的可达到1.8左右,具有良好频率择性。

频率温度稳定性好:由于石英晶体在宽温度范围内具有的特性,使得晶体滤波器的幅频特性在宽温度范围内具有非常高的稳定性。

体积小:石英晶体滤波器所需的元件较少,而且许多元件都可实现表贴化,因此,这种晶体滤波器的体积相对较小。

插损小:一般均小于5dB。

 

      石英晶体谐振器是最常用的晶体谐振器之一,它在滤波器中主要用作窄带通滤波器。钽酸锂或铌酸锂晶体谐振器的耦合系数和频率常数较大,适用于制做高频宽带通滤波器。其他压电材料因温度稳定性较差,很少采用。

 


 

  当作用于晶体谐振器的电信号频率等于晶体的固有频率时,电能通过晶体的逆压电效应在晶体中引起机械谐振产生机械能;在输出端,正压电效应又将这种机械能转换为电信号。晶体谐振器及其等效电路和阻抗特性如上图1。其中,L1、C1和R1分别代表晶体谐振器的动态电感、动态电容和动态电阻;C0为晶体支架和电极间的静态电容。R1通常很小,可忽略不计。这样,图1a的等效电路可视为纯电抗二端网络。谐振器的串联、并联谐振频率f1、f2以及比值f2/f1分别为:

  
 

比值 f2/f1随比值C1/C0而异。这个特性可以用来调节晶体滤波器的通频带。例如,谐振器外接一个串联电容器,等效于C1减小、f1升高;而外接一个并联电容器,则等效于C0增大、f2降低。两者均可缩小f1与f2之间的间隔,即缩窄通频带。如果串接或并接电感器,则将增大频率间隔,展宽通频带。

  因晶片不能做得很薄,石英晶体谐振器的基波频率只能达到30~35兆赫。工作频率较高的谐振器大多工作于泛音(高于基频近奇次倍的振动),但泛音次数越高,串、并联谐振频率的间隔越小。

  70年代发展起来的离子刻蚀技术能使晶体谐振器的基波频率接近 500兆赫。但由于外接元件,特别是线圈问题,其泛音频率也只能做到 600兆赫,相对带宽约为0.01%~1%。


 

  分立式晶体滤波器  由分立式晶体谐振器和分立式电子元件构成的滤波器,图2a的差接桥型晶体滤波器是其一种。在滤波性能上它和格型滤波器等效,但所用的晶体谐振器数目可减少一半。其阻抗特性及衰减特性如上图2b 和c。在f1至f3之间,z1和z2的符号相反,又由于变压器次级两端电压的极性相反,两臂中的电流同号相加,所以f1至f3间为滤波器的通频带。同理,当f<f1和f>f3时,z1和z2同号,两臂电流异号相减;所以f1~f3两侧以外的区域为阻带。z1=z2时,输出为零,f、f为无穷大衰减频率。分立式晶体滤波器可实现的中心频率为10千赫到350兆赫,相对带宽为0.01%~10%。

至于梯型石英晶体滤波器(如下图):





由于使用石英晶体数量较多,群延时指标低于差接桥型,而且在规定带内波动指标的前提下,带宽受到限制等多方面原因,在专业无线电设备中较难看到,相反因其电路简单,在业余爱好者的DIY制作中比较常见(业余爱好者的套件一般只提带内波动、插入损耗、阻带衰减、矩形系数,绝不谈群延时指标)。

  集成式晶体滤波器

         采用集成电路工艺制作的晶体滤波器,有单片的、串联单片的和多片的三种类型。


          单片晶体滤波器(MCF)由镀在AT切石英片上若干对电极形成的耦合谐振器组成。是在石英基片表面配置若干对金属电极形成的耦合谐振器组成,它能够构成的带通和带阻滤波器。 它利用压电效应的能陷理论来选择电极振子的几何尺寸、返回频率和电极振子间矩,以控制超声波的声学耦合,从而达到滤波的目的。其特点是频率选择度十分陡峭、损耗低、稳定性好、阻带衰减高,现已在移动通信设备中大量使用,是必不可少的初级中频滤波器,对提高整机灵敏度和抗干扰能力具有重要作用。国外MCF产品实用化水平为:中心频率为几MHz~150MHz,带宽0.001~0.1%,频道间隔12.5~25kHz,最小封装尺寸为8×8×3.2mm,重量为0.4g。
MCF目前的发展方向集中在开发新型压电材料、扩展带宽、减少带内延时波动、增大带外衰减、扩充和提高中频点和线性度并使封装尺寸进一步小型化和片式化。 下图为其中最简单的四电极单片晶体滤波器电路结构及其等效电路。输入谐振器随所加信号电压而产生厚度切变振动,晶片因受电极质量负荷的影响,电极区的谐振频率比非电极区的低,使弹性波在两区边界发生反射,从而使绝大部分能量陷落在电极区内,少量泄漏的能量则耦合到与之相邻的谐振器。这样依次相传到输出谐振器,再变为电信号。适当地设计电极尺寸、谐振器间距和频率镀回率,就可以控制弹性波在晶片中的传播,从而实现滤波功能。 
 

            串联单片晶体滤波器  由若干用电容耦合的单片晶体滤波器组成下图4。其优点是利于调整工作频率和抑制寄生频率。

       多片晶体滤波器  由串联的耦合谐振器、并联的单谐振器和电容器组成下图5。其特点是能在靠近通频带的频率上形成若干衰减峰,有利于抑制干扰和改善滤波性能。

   集成式晶体滤波器体积小、可靠性高而且造价低。但其中心频率只有4.5~350兆赫,相对带宽为0.01%~0.3%,所以在要求中心频率低、通频带宽的场合尚不能取代分立式晶体滤波器。
 

术语解释 


1、 插入损耗:信号源直接传送给负载阻抗的功率(P0)和插入滤波器后传送给负载阻抗的功率(P1)之比的对数值。通常用分贝(dB)为单位进行度量,表示为IL=10 lg (P0/ P1)。 
2、 通带波动:通带内衰耗的最大峰值与最小谷值之差。 
3、 通带宽度;指相对衰耗小于和等于某一规定值时的频率宽度(如1dB、2dB、3dB、6dB等)。 
4、 阻带衰耗:指整个阻带内的最小衰耗值。 
5、 阻带宽度:相对衰耗等于和大于某规定值时的频带宽度(如40dB、50dB、60dB、80dB等)。 
6、 匹配阻抗:滤波器技术条件中要求的端接匹配阻抗值。 
 

应用指南 


石英晶体滤波器根据其结构不同分为集成式单片滤波器和分离式滤波器。   
  集成式滤波器结构简单、体积小、价格低,但其带宽和频率受到限制,分离式滤波器则可以弥补集成式滤波器的不足,使可实现的频率和带宽得以拓展。   
  数字通讯技术的发展,对晶体滤波器的群延时特性及互调失真指标提出要求,而分离式滤波器能够较容易解决。 
1、 阻抗匹配:性能优良的滤波器在与其端接的电路阻抗不匹配时,滤波特性会变差,引起通带波动增大,插损增加。当外电路阻抗低于滤波器特性阻抗时,中心频率将下移,反之上移。滤波器的测试或使用应符合以下原理图
 

 

 


 

信号源+电平表"功能由网络分析仪完成
  Ri、R0:仪器内阻:一般为50Ω
  R1--滤波器输入端外接阻抗,阻抗值为匹配阻抗减去50Ω。
  R2--滤波器输出端外接阻抗,阻抗值为匹配阻抗减去50Ω。
  在滤波器条件的匹配阻抗中有时有并接电容要求,应按上图连接。 
2、 合理的测量电平;如同晶体对激励电平的要求一样,滤波器中其核心元件仍是晶体,因此激励电平在没有规定时,一般选0dB作为输入电平。 
3、 良好的屏蔽:对滤波器的输入端和输出端进行良好屏蔽,以使信号源的能量不能直接耦合到负载端。对甚高频以上滤波器,则应使滤波器与仪器间的连接尽量符合同轴线原理。滤波器在线路上时应尽可能采用大面积接地,并将输入、输出端隔离,保证滤波器的阻带衰耗。

产品定购和使用中的注意事项

根据产品手册选择适当的技术参数:如中心频率、通带宽度、带内波动、带外抑制、矩形系数、端接阻抗等;使用中的注意事项:晶体滤波器输入输出端需有隔直电容;合理的接地,大面积接地可以提高带外衰减;良好的阻抗匹配可以得到最佳的滤波效果。 

附图片:




 

 

 

 

 

一军机上的高中频(63.65MHz)晶体滤波器